001033

Improving the reproducibility of papillary muscle maneuvers in type IIIb MR: focus on papillary muscle geometry

THE 38TH EACTS ANNUAL MEETING | 9 - 12 OCTOBER 2024

Background / Study Objective

- **Type IIIb MR** results from geometric LV distortion → papillary muscle displacement → mitral leaflet tethering
- **Papillary muscle maneuvers** have been shown to improve the stability of MV repair in type IIIb MR.
- **REFORM-MR** registry confirmed the safety and efficacy of papillary muscle maneuvers in a multicenter setting
- The **reproducibility** remains an issue which limits broader implementation of such techniques
- We focused on papillary muscle geometry aiming to improve the reproducibility of papillary muscle maneuvers

Patients

Study cohort: 219 consecutive patients undergoing cardiac surgery at University Hospital (2021 – 2023)

Variable	Cohort 1 (no MR) (n=141)	Cohort 2 (MR) (n=78)	Total cohort (n=219)	p value	
Age	63.4 (11)	62.8 (11.2)	63.2 (11.1)	0.68	
Gender (m/f)	109/32	58/20	167/52	0.75	Cohort 1 \cdot CABC or SAVE
BSA	2 (0.2)	1.9 (0.2)	1.9 (0.2)	0.34	
Arterial hypertension	99 (70.2)	34 (43.6)	133 (60.7)	<0.01	
Diabetes	33 (23.4)	4 (5.1)	37 (16.9)	<0.01	Cohort 2 · MV repair
LVEF (%)	47.1 ± 12.4	50.2 ± 9.9	48.2 ± 11.6	0.10	(MR)
LVEDD (mm)	59.4 ± 9.1	63.3 ± 10.9	60.7 (9.9)	<0.01	(
LVEDV (ml)	112.6 (43.5)	123.9 (42.8)	116.7 (43.5)	0.06	
LVESD (mm)	44 (9.9)	46.6 (9.8)	44.9 (9.9)	0.06	
LVESV (ml)	64 (31.4)	68.4 (31.8)	65.6 (31.6)	0.33	
Sphericity Index	1.5 (0.2)	1.3 (0.2)	1.4 (0.2)	<0.01	
Interpapillary distance (mm)	20.4 (5.2)	21.2 (5.8)	20.7 (5.4)	0.25	

3 | THE 38TH EACTS ANNUAL MEETING | 9 - 12 OCTOBER 2024 | LISBON, PORTUGAL

Methods 1

- TOE measurements (A,B,C) of echocardiographic distance between papillary muscle (PM) tips and mitral valve annulus
 - A posteromedial PM posterior MV annulus (P3)
 - B anterolateral PM posterior MV annulus (P1)
 - C PM tips plane MV annulus plane
- Study endpoints:

(1) Correlation between PM distance measurements

- intra-individual variation between A, B, and C
- inter-individual variation between A,B and C Cohort I vs. Cohort II

(2) Correlation between PM distances and patients' characteristics

- Echocardiographic markers (LV size & geometry)
- Baseline characteristics (age, gender, BSA)

(3) Prediction model of optimal PM distance

4 | THE 38TH EACTS ANNUAL MEETING | 9 - 12 OCTOBER 2024 | LISBON, PORTUGAL

Results 1

(1) Correlation between PM distance measurements

- intra-individual variation between A, B, and C - strong correlation

Variable	Cohort 1 (no MR) (n=141)	Cohort 2 (MR) (n=78)	Total cohort (n=219)	p value
A (mm)	29.7 ± 5.3	30.9 ± 5.9	30.1 ± 5.5	0.15
B (mm)	26.8 ± 5.3	28.8 ± 5.8	27.5 ± 5.5	0.01
C (mm)	26.4 ± 4.7	27.4 ± 4.9	26.7 ± 4.8	0.13
Cumulative distance*	28.3 ± 4.7	29.8 ± 5.0	28.8 ± 4.8	0.02

5 | THE 38TH EACTS ANNUAL MEETING | 9 - 12 OCTOBER 2024 | LISBON, PORTUGAL

* i.e., mean of A and B

Cohort I

Cohort II

Results 2

(2) Correlation between PM distance (cumulative) and patients' characteristics

- Echocardiographic markers (LV size & geometry) – better correlation for diastolic LV measures

- Baseline characteristics
 - Age: no significant correlation (R = -0.054, p = 0.43)
 - Gender, BSA: significant correlation (R = 0.28, p = 3.4e-05)

(3) Prediction model of optimal PM distance

Among all considered linear prediction models, the best model included a single echocardiographic parameter (LV length in end-diastole)

Conclusion

- We present a thorough analysis of papillary muscle geometry based on standardized perioperative TOE-measurements in consecutive patients undergoing cardiac surgery
- The "normal" distance between PM tips and posterior mitral valve annulus is relatively stable and ranges between 27 – 30mm in patients without MR (A > B). The distance is increased by 1-2 mm in patients with MR
- The distance between **PM tips and posterior mitral valve annulus** correlates significantly with LV size and volume, while diastolic markers (in particular LVEDD) showed better correlation
- Mathematical models to predict the optimal PM distance based on echocardiographic and baseline parameters are desirable, however still suboptimal